Annular RH Series Thermoelectric Cooler

The RH14-14-10-L1-W4.5 is an annular thermoelectric cooler that is round in shape. The hot and cold side ceramics have a circular hole in the center to accommodate light protrusion for optics, mechanical fastening or temperature probe. It has a maximum Qc of 3.5 Watts when ΔT = 0 and a maximum ΔT of 70.5 °C at Qc = 0.

Features
- Center Hole
- Precise Temperature Control
- No sound or vibration
- Reliable solid-state
- DC Operation
- RoHS-compliant

Applications
- Thermoelectric Coolers for Reagent Storage
- Thermoelectric Coolers for Handheld Cosmetic Lasers
- Cooling for Centrifuges
- Heads-Up Displays, Imaging Sensors
- Peltier Cooling for Machine Vision

ELECTRICAL AND THERMAL PERFORMANCE

Heat Pumped at Cold Side
Thot = 27 °C

Heat Pumped at Cold Side
Thot = 27 °C

Current vs Voltage (I vs V)
Thot = 27 °C
Annular RH Series RH14-14-10-L1-W4.5
MFG Part Number: 71062-514

Coefficient of Performance (COP = Qc/Pin)
Thot = 27 °C

Operating Current (Amps)

Operating Voltage (Volts)

Total Heat Dissipated at Hot Side (Qh=Qc+Pin)
Thot = 27 °C

Heat Pumped at Cold Side (Qc)
Thot = 27 °C | Current = 3.3 Amps

Coefficient of Performance (COP = Qc/Pin)
Thot = 27 °C | Current = 3.3 Amps
SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>27.0 °C</th>
<th>35.0 °C</th>
<th>50.0 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Side Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qcmax (ΔT = 0)</td>
<td>3.5 Watts</td>
<td>3.7 Watts</td>
<td>3.8 Watts</td>
</tr>
<tr>
<td>ΔTmax (Qc = 0)</td>
<td>70.5°C</td>
<td>73.5°C</td>
<td>78.8°C</td>
</tr>
<tr>
<td>Imax (I @ ΔTmax)</td>
<td>3.9 Amps</td>
<td>3.9 Amps</td>
<td>3.8 Amps</td>
</tr>
<tr>
<td>Vmax (V @ ΔTmax)</td>
<td>1.5 Volts</td>
<td>1.6 Volts</td>
<td>1.7 Volts</td>
</tr>
<tr>
<td>Module Resistance</td>
<td>0.37 Ohms</td>
<td>0.38 Ohms</td>
<td>0.41 Ohms</td>
</tr>
<tr>
<td>Max Operating Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.0 gram(s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Specifications reflect thermoelectric coefficients updated March 2020

FINISHING OPTIONS

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Thickness</th>
<th>Flatness / Parallelism</th>
<th>Hot Face</th>
<th>Cold Face</th>
<th>Lead Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>4.700 ±0.025 mm 0.185 ± 0.001 in</td>
<td>0.025 mm / 0.025 mm 0.001 in / 0.001 in</td>
<td>Lapped</td>
<td>Lapped</td>
<td>114.3 mm 4.50 in</td>
</tr>
</tbody>
</table>

SEALING OPTIONS

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Sealant</th>
<th>Color</th>
<th>Temp Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td></td>
<td></td>
<td>No sealing specified</td>
</tr>
</tbody>
</table>

NOTES

1. Max operating temperature: 80°C
2. Do not exceed Imax or Vmax when operating module
3. Reference assembly guidelines for recommended installation
4. Solder tinning also available on metallized ceramics

Any information furnished by Laird and its agents, whether in specifications, data sheets, product catalogues or otherwise, is believed to be (but is not warranted as being) accurate and reliable, is provided for information only and does not form part of any contract with Laird. All specifications are subject to change without notice. Laird assumes no responsibility and disclaims all liability for losses or damages resulting from use of or reliance on this information. All Laird products are sold subject to the Laird Terms and Conditions of sale (including Laird’s limited warranty) in effect from time to time, a copy of which will be furnished upon request.

© Copyright 2020 Laird Thermal Systems GmbH. All Rights Reserved. Laird, Laird Technologies, Laird Thermal Systems, the Laird Logo, and other word marks and logos are trademarks or registered trademarks of Laird Limited or an affiliate company thereof. Other product or service names may be the property of third parties. Nothing herein provides a license under any Laird or any third party intellectual property rights.

Date: 04/24/2020