Tunnel Series

Thermoelectric Cooler Assemblies for Reagent Storage

Introduction

Maintaining a precise temperature below ambient, and monitoring this temperature carefully, are critical to extending the shelf life of reagents used in chemical and biological processes. Most reagents require precise temperature control and would deteriorate within hours due to poor refrigeration. When they are kept at room temperature, reagents can degrade and may become contaminated by microbial growth, which can affect test integrity results. Reagents can also be negatively affected by low temperatures if they undergo too many freeze-thaw cycles. 




Download PDF:


Cooling for Centrifuges

A centrifuge is a laboratory device using centrifugal force to separate liquid mixtures. To separate fluids, the centrifuge spins samples at a fast rate, resulting in heavy components to migrate away from the center axis and lighter components to migrate towards the axis. Centrifuge devices are widely used tools in food processing and medical research for cellular, genetic and protein analysis. When designing laboratory and medical centrifuges, several design challenges must be considered. 

DAT-105-24-02 Direct-to-Air

The DAT-105-24-02 is a thermoelectric based air conditioner designed to temperature control small chambers used in analytical and medical diagnostic instruments. The unique design offers premium fans pushing air across-high density heat sinks to minimize the number of air flow paths required to operate. The design utilizes custom thermoelectric modules to maximize cooling capacity with a high coefficient of performance. Moisture resistant insulation is used to keep condensation from penetrating the TEM cavity. The unit operates on DC and is designed for an indoor lab use environment.


Qc Max:


DAT-105-12-02 Direct-to-Air

The DAT-105-12-02 is a thermoelectric based air conditioner designed to temperature control small chambers used in analytical and medical diagnostic instruments. The unique design offers premium fans pushing air across-high density heat sinks to minimize the number of air flow paths required to operate. The design utilizes custom thermoelectric modules to maximize cooling capacity with a high coefficient of performance. Moisture resistant insulation is used to keep condensation from penetrating the TEM cavity. The unit operates on DC and is designed for an indoor lab use environment.


Qc Max:


AAT-085-24-22 Air-to-Air

The AAT-085-24-22 is a thermoelectric based air conditioner designed to temperature control small chambers used in analytical and medical diagnostic instruments. The unique design offers premium fans pushing air across-high density heat sinks to minimize the number of air flow paths required to operate. The design utilizes custom thermoelectric modules to maximize cooling capacity with a high coefficient of performance. Moisture resistant insulation is used to keep condensation from penetrating the TEM cavity. The unit operates on DC and is designed for an indoor lab use environment.


Qc Max:


AAT-085-12-22 Air-to-Air

The AAT-085-12-22 is a thermoelectric based air conditioner designed to temperature control small chambers used in analytical and medical diagnostic instruments. The unique design offers premium fans pushing air across-high density heat sinks to minimize the number of air flow paths required to operate. The design utilizes custom thermoelectric modules to maximize cooling capacity with a high coefficient of performance. Moisture resistant insulation is used to keep condensation from penetrating the TEM cavity. The unit operates on DC and is designed for an indoor lab use environment.


Qc Max:


DAT-065-12-02 Direct-to-Air

The DAT-065-12-02 is a thermoelectric based air conditioner designed to temperature control small chambers used in analytical and medical diagnostic instruments. The unique design offers premium fans pushing air across-high density heat sinks to minimize the number of air flow paths required to operate. The design utilizes custom thermoelectric modules to maximize cooling capacity with a high coefficient of performance. Moisture resistant insulation is used to keep condensation from penetrating the TEM cavity. The unit operates on DC and is designed for an indoor lab use environment.


Qc Max:


DAT-065-24-02 Direct-to-Air

The DAT-065-24-02 is a thermoelectric based air conditioner designed to temperature control small chambers used in analytical and medical diagnostic instruments. The unique design offers premium fans pushing air across-high density heat sinks to minimize the number of air flow paths required to operate. The design utilizes custom thermoelectric modules to maximize cooling capacity with a high coefficient of performance. Moisture resistant insulation is used to keep condensation from penetrating the TEM cavity. The unit operates on DC and is designed for an indoor lab use environment.


Qc Max:


AAT-055-24-22 Air-to-Air

The AAT-055-24-22 is a thermoelectric based air conditioner designed to temperature control small chambers used in analytical and medical diagnostic instruments. The unique design offers premium fans pushing air across-high density heat sinks to minimize the number of air flow paths required to operate. The design utilizes custom thermoelectric modules to maximize cooling capacity with a high coefficient of performance. Moisture resistant insulation is used to keep condensation from penetrating the TEM cavity. The unit operates on DC and is designed for an indoor lab use environment.


Qc Max:


AAT-055-12-22 Air-to-Air

The AAT-055-12-22 is a thermoelectric based air conditioner designed to temperature control small chambers used in analytical and medical diagnostic instruments. The unique design offers premium fans pushing air across-high density heat sinks to minimize the number of air flow paths required to operate. The design utilizes custom thermoelectric modules to maximize cooling capacity with a high coefficient of performance. Moisture resistant insulation is used to keep condensation from penetrating the TEM cavity. The unit operates on DC and is designed for an indoor lab use environment.


Qc Max: