Common Coolant Types and their Uses in Liquid Cooling Systems

Introduction

As power densities and thermal loads continue to increase in crowded electronic systems, and specific analytical and diagnostic testing processes demand more temperature stabilization for improved accuracy and results, more equipment designers, R&D labs and diagnostic laboratories are turning to liquid cooling solutions for better thermal management. Optimal cooling fluids improve accuracy of results, improve equipment performance, minimize downtime, reduce maintenance costs, ensure safety and can help meet environmental compliance.

Multistage Micro Thermoelectric Coolers for Miniature Optical Image Sensing Applications

Introduction

Miniature optical packages provide a robust hermetic seal to protect small image-sensing components, including CMOS, CCD, IR, and X-ray detectors. Optical packages, like Transistor Outline (TO) Cans, are widely used for image-sensing applications. For high-end image sensing, micro thermoelectric coolers (TECs) can be integrated into optical packages called Optical Thermoelectric Assemblies (TEAs). This will provide deep cooling to temperatures well below ambient to minimize thermal noise and capture maximum light spectrum.

Advanced Liquid Cooling for Rheometers

 

Introduction

Rheometers are scientific instruments used for studying the stress-strain relationship of polymers, fluids, and other soft materials to understand their flow/deformation properties. Rheometers are applied in a wide range of applications, such as in the development of new materials, quality control, and process optimization. Any rheometer that operates at elevated temperatures or measures temperature-dependent material properties requires a cooling system to maintain a precise temperature during testing.

Eco-Friendly Temperature Stabilization Solutions for OEMs’ Climate Action Goals

Introduction

At Laird Thermal Systems, we are committed to eco-friendly solutions for temperature stabilization for demanding applications across global medical, analytical, industrial, transportation, and telecommunications markets.

Older compressor-based systems often use high global-warming potential (GWP) HFC refrigerants like R134a and R404A. New industry requirements are moving away from the use of such refrigerants due to their environmental impact. New government restrictions on traditional and natural refrigerants are central to compressor-based systems.

Laird Thermal Systems Commits to Sustainable Principles with SBTi-Endorsed Emissions Goals


October 16, 2023Laird Thermal Systems, a global leader in thermal management solutions, is proud to announce the official approval of its greenhouse gas emissions reduction targets by the Science Based Targets initiative (SBTi), with levels required to meet the goals of the Paris Agreement. This significant achievement underscores Laird Thermal Systems’ unwavering commitment to Environmental, Social, and Governance (ESG) principles and responsible business practices.




Download PDF:


Electronic Enclosure Cooling Thermoelectric vs. Compressor-Based Air Conditioners

Introduction

Air conditioners utilizing thermoelectric coolers are often considered as an alternative to conventional vapor-compression systems for enclosure cooling. Because a thermoelectric cooler is compact, robust, and completely solid-state, the inherent reliability of such a system is attractive to engineers and end-users alike. However, there is an inherent reluctance to choose a thermoelectric-based system due to preconceptions about energy efficiency or lack of experience with thermoelectrics.

How to make the Laird Thermal Systems Wizard your Thermal Wizard

Introduction

Engineers of all disciplines more frequently need a Thermal Wizard, someone who can solve their heat dissipation or critical thermal management problems. If you need a Thermal Wizard or you are that Thermal Wizard that coworkers count on, then you are familiar with the more common issues associated with solving unanticipated or sudden thermal management problems.

Alternative Refrigerants for 21st Century Laboratories

media only screen and (max-width: 740px) { .field.field--name-body.field--type-text-with-summary.field--label-hidden.field--item { width:100%; } } @media only screen and (max-width: 640px) { .field.field--name-body.field--type-text-with-summary.field--label-hidden.field--item { width:66%; } }

Laird Thermal Systems Technical Paper
by Greg Ducharme, Product Director, Liquid Cooling Systems

Cooling Particle Accelerators: Linear Accelerators and Cyclotrons

Introduction

Particle accelerators, such as linear accelerator (LINAC) and cyclotron systems, increase the kinetic energy of particles for use in a variety of applications, ranging from scientific studies on particle physics to radiation therapy for cancer patients. Particle accelerators, like most sensitive medical and laboratory equipment, are negatively affected by thermal variations, specifically an increase in heat. Temperature control of vital particle accelerator system components is critical for operational integrity, performance accuracy and system reliability.